Homogeneous multiplication operators on bounded symmetric domains
نویسندگان
چکیده
منابع مشابه
Multiplication Operators on the Bloch Space of Bounded Homogeneous Domains
In this paper, we study the multiplication operators on the Bloch space of a bounded homogeneous domain in C. Specifically, we characterize the bounded and the compact multiplication operators, establish estimates on the operator norm, and determine the spectrum. Furthermore, we prove that for a large class of bounded symmetric domains, the isometric multiplication operators are those whose sym...
متن کاملIndex Theory for Toeplitz Operators on Bounded Symmetric Domains
In this note we give an index theory for Toeplitz operators on the Hardy space of the Shilov boundary of an arbitrary bounded symmetric domain. Our results generalize earlier work of Gohberg-Krein and Venugopalkrishna [12] for domains of rank 1 and of Berger-Coburn-Koranyi [1] for domains of rank 2. Bounded symmetric domains (Cartan domains, classical or exceptional) are the natural higher-dime...
متن کاملHankel Operators on the Bergman Space of Bounded Symmetric Domains
Let ii be a bounded symmetric domain in C with normalized 2 volume measure dV . Let P be the orthogonal projection from L (il, dV) 2 2 onto the Bergman space La(Q) of holomorphic functions in L (ii, dV). Let P be the orthogonal projection from L (ii, dV) onto the closed subspace of antiholomorphic functions in L (ii, dV). The "little" Hankel operator h, with symbol / is the operator from La(Ci)...
متن کاملBounded Symmetric Homogeneous Domains in Infinite Dimensional Spaces
In this article, we exhibit a large class of Banach spaces whose open unit balls are bounded symmetric homogeneous domains. These Banach spaces, which we call J*-algebras, are linear spaces of operators mapping one Hilbert space into another and have a kind of Jordan tripte product structure. In particular, all Hilbert spaces and all B*--algebras are J*-algebras. Moreover, all four types of the...
متن کاملBounded Holomorphic Functions on Bounded Symmetric Domains
Let D be a bounded homogeneous domain in C , and let A denote the open unit disk. If z e D and /: D —► A is holomorphic, then ß/(z) is defined as the maximum ratio \Vz(f)x\/Hz(x, 3c)1/2 , where x is a nonzero vector in C and Hz is the Bergman metric on D . The number ßf(z) represents the maximum dilation of / at z . The set consisting of all ß/(z), for z e D and /: D —► A holomorphic, is known ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Functional Analysis
سال: 2003
ISSN: 0022-1236
DOI: 10.1016/s0022-1236(02)00072-1